Results 1 to 3 of 3

Thread: Dual space

  1. #1
    Junior Member
    Joined
    Aug 2009
    Posts
    62

    Dual space

    Let V be a vector space over field F.Let g,f1,f2,...fk belong to V* i.e;dual of v,then show that g belongs to span{f1,f2,...,fk} if and only if intersection of kernel(fi) i=1 to k is subset of Kernel(g)..

    Thank you in advance..
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Banned
    Joined
    Oct 2009
    Posts
    4,261
    Thanks
    3
    Quote Originally Posted by math.dj View Post
    Let V be a vector space over field F.Let g,f1,f2,...fk belong to V* i.e;dual of v,then show that g belongs to span{f1,f2,...,fk} if and only if intersection of kernel(fi) i=1 to k is subset of Kernel(g)..

    Thank you in advance..
    In any vector space we have that $\displaystyle x\in Span\{v_1,...,v_n\}\Longleftrightarrow x \mbox{ is a linear combination of } v_1,...,v_n$.
    We can assume $\displaystyle f_1,...,f_k$ are lin. indep.

    Thus in our case: $\displaystyle g\in Span\{f_1,...,f_k\}\Longrightarrow g=\sum\limits_{i=1}^ka_if_k$ $\displaystyle \Longrightarrow \,\forall\,x\in\bigcap\limits_{i=1}^kKer(f_k)\,,\, \;g(x)=\sum\limits_{i=1}^ka_if_i(x)=0\Longrightarr ow\,x\in Ker(g)$ $\displaystyle \Longrightarrow\bigcap\limits_{i=1}^kKer(f_i)\subs et Ker(g)$

    OTOH, if $\displaystyle g\notin Span\{f_1,...,f_k\}$ then $\displaystyle \{f_1,...,f_k,g\}$ is lin. indep, so we can complete it to a basis $\displaystyle X=\{f_1,...,f_k,g,h_1,...,h_r\}$ of $\displaystyle V^{*}$, and let $\displaystyle \{v_1,...v_k,v_g,u_1,..,u_r\}$ be the dual basis of $\displaystyle X$ $\displaystyle \Longrightarrow\, \forall\,1\leq i\leq k\,,\,\,f_i(v_g)=0\,\,but\,\,g(v_g)=1\Longrightarr ow \bigcap\limits_{i=1}^kKer(f_i)\nsubseteq Ker(g)$ and we're done.

    Tonio
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Aug 2009
    Posts
    62
    Thank a ton..
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Normed space and dual space
    Posted in the Differential Geometry Forum
    Replies: 5
    Last Post: Jun 5th 2011, 10:46 PM
  2. Dual Space of a Vector Space Question
    Posted in the Differential Geometry Forum
    Replies: 2
    Last Post: Apr 16th 2011, 03:02 AM
  3. Dual space of a vector space.
    Posted in the Advanced Algebra Forum
    Replies: 15
    Last Post: Mar 6th 2011, 02:20 PM
  4. Dual space
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: Oct 12th 2009, 02:35 PM
  5. vector space and its dual space
    Posted in the Advanced Algebra Forum
    Replies: 3
    Last Post: Sep 26th 2009, 08:34 AM

Search Tags


/mathhelpforum @mathhelpforum