If $\displaystyle G=<a>$ |a|=24, let $\displaystyle H=<a^6>$
In $\displaystyle G/H$ find the order of $\displaystyle Ha^2, Ha^3, Ha^4, Ha^5$
Using lagrange's theorem, would the order be $\displaystyle Ha^2=6, Ha^3=2, Ha^4=3, Ha^5=6$?
Thanks
If $\displaystyle G=<a>$ |a|=24, let $\displaystyle H=<a^6>$
In $\displaystyle G/H$ find the order of $\displaystyle Ha^2, Ha^3, Ha^4, Ha^5$
Using lagrange's theorem, would the order be $\displaystyle Ha^2=6, Ha^3=2, Ha^4=3, Ha^5=6$?
Thanks