Results 1 to 6 of 6

Math Help - Invertible Matrix

  1. #1
    Member
    Joined
    Oct 2008
    Posts
    124

    Invertible Matrix

    For which values of the constants b and c is the following matrix invertible? (The following is all one matrix)

    [ 0 1 b]
    [-1 0 c]
    [-b -c 0]
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Math Engineering Student
    Krizalid's Avatar
    Joined
    Mar 2007
    From
    Santiago, Chile
    Posts
    3,654
    Thanks
    13
    it's a very straightforward problem, you only need to compute its determinant and set it different from zero.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor
    Joined
    Oct 2005
    From
    Earth
    Posts
    1,599
    Quote Originally Posted by noles2188 View Post
    For which values of the constants b and c is the following matrix invertible? (The following is all one matrix)

    [ 0 1 b]
    [-1 0 c]
    [-b -c 0]
    I'll suggest some things before one of the wonderful members gives better advice.

    You know that invertible matrices must have a non-zero determinant, so maybe calculating that can lead to some conclusions. The columns and rows must also be linearly independent, so I would think about that. Hope that helps some...
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Member
    Joined
    Oct 2008
    Posts
    124
    well the thing is, we haven't learned how to do 3x3 determinants yet. I know how to do it, but we've just been trying to get reduced row echelon form to check invertibility. Any other suggestions?
    Follow Math Help Forum on Facebook and Google+

  5. #5
    MHF Contributor
    Joined
    Oct 2005
    From
    Earth
    Posts
    1,599
    Quote Originally Posted by noles2188 View Post
    well the thing is, we haven't learned how to do 3x3 determinants yet. I know how to do it, but we've just been trying to get reduced row echelon form to check invertibility. Any other suggestions?
    Well if you get the reduced row echelon form of the matrix, you can easily check if the rows and columns are linearly independent. If this matrix is invertible the rank must be 3.
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Member
    Joined
    Sep 2009
    Posts
    112
    well if you're going to reduce row echelon form it, you can always set it up like:

    <br />
\left [\begin{array}{ccc}<br />
0 & 1 & b \\<br />
-1 & 0 & c \\<br />
-b & -c & 0 \end{array} \Bigg|\begin{array}{ccc}<br />
1 & 0 & 0 \\<br />
0 & 1 & 0 \\<br />
0 & 0 & 1 \\<br />
\end{array} \right]<br />

    And reduce that and you can see what values you need to set b and c to be, to make it invertible.


    Though you automatically know that b and c cannot both be zero and b \ne c otherwise it'd be not invertible.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. invertible matrix
    Posted in the Advanced Algebra Forum
    Replies: 4
    Last Post: October 3rd 2011, 09:57 PM
  2. Invertible matrix
    Posted in the Math Challenge Problems Forum
    Replies: 9
    Last Post: July 1st 2010, 03:49 AM
  3. Invertible Matrix
    Posted in the Differential Geometry Forum
    Replies: 3
    Last Post: May 5th 2010, 12:56 PM
  4. Nilpotent matrix Invertible matrix
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: January 6th 2010, 12:08 PM
  5. Invertible Matrix
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: January 14th 2007, 02:40 PM

Search Tags


/mathhelpforum @mathhelpforum