Results 1 to 5 of 5

Math Help - You have ten U.S. coins that add up exactly to $1.00

  1. #1
    Junior Member
    Joined
    Mar 2009
    From
    Berkeley, California
    Posts
    26

    Cool You have ten U.S. coins that add up exactly to $1.00

    Hi, my name is Andy. I am currently taking linear algebra. My teacher assigned us a problem but I've come to an impasse.

    (4 points) You have ten U,S. coins in current circulation that add up to exactly $1.00. Find the solution that has the most types of coins. (Current circulation denominations: $1.00, 50 cents, 25 cents, 10 cents, 5 cents, 1 cent.)

    (variables are represented by the first letter of their coin name)

    50F + 25Q + 10D + 5N + P = 10

    0.50F + 0.25Q + 0.10D + 0.05N + 0.01P = 1.00

    If you multiply the first equation by 10, and the second equation by 100, you can then set both equations equal to each other.

    500F + 250Q + 100D + 50N + 10P = 100

    50F + 25Q + 10D + 5N + P = 100

    However, I'm not quite sure what to do from here. Isolate a variable? This worked with 3 variables (chicken, hen, rooster problem), but 5 variables is too much to do this with! or is it? RREF form? hmmmm....

    The intended way to solve this was to isolate the variable with the highest value, F. I'm lost here.

    Can anyone give me the next step? I'm not looking for a total answer, but just a lead in the right direction.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by TheBerkeleyBoss View Post
    Hi, my name is Andy. I am currently taking linear algebra. My teacher assigned us a problem but I've come to an impasse.

    (4 points) You have ten U,S. coins in current circulation that add up to exactly $1.00. Find the solution that has the most types of coins. (Current circulation denominations: $1.00, 50 cents, 25 cents, 10 cents, 5 cents, 1 cent.)

    (variables are represented by the first letter of their coin name)

    50F + 25Q + 10D + 5N + P = 10

    0.50F + 0.25Q + 0.10D + 0.05N + 0.01P = 1.00

    If you multiply the first equation by 10, and the second equation by 100, you can then set both equations equal to each other.

    500F + 250Q + 100D + 50N + 10P = 100

    50F + 25Q + 10D + 5N + P = 100

    However, I'm not quite sure what to do from here. Isolate a variable? This worked with 3 variables (chicken, hen, rooster problem), but 5 variables is too much to do this with! or is it? RREF form? hmmmm....

    The intended way to solve this was to isolate the variable with the highest value, F. I'm lost here.

    Can anyone give me the next step? I'm not looking for a total answer, but just a lead in the right direction.
    Your first equation is wrong, you have 10 coins so:

    F + Q + D + N + P = 10

    CB
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by TheBerkeleyBoss View Post
    Hi, my name is Andy. I am currently taking linear algebra. My teacher assigned us a problem but I've come to an impasse.

    (4 points) You have ten U,S. coins in current circulation that add up to exactly $1.00. Find the solution that has the most types of coins. (Current circulation denominations: $1.00, 50 cents, 25 cents, 10 cents, 5 cents, 1 cent.)

    (variables are represented by the first letter of their coin name)

    50F + 25Q + 10D + 5N + P = 10

    0.50F + 0.25Q + 0.10D + 0.05N + 0.01P = 1.00

    If you multiply the first equation by 10, and the second equation by 100, you can then set both equations equal to each other.

    500F + 250Q + 100D + 50N + 10P = 100

    50F + 25Q + 10D + 5N + P = 100

    However, I'm not quite sure what to do from here. Isolate a variable? This worked with 3 variables (chicken, hen, rooster problem), but 5 variables is too much to do this with! or is it? RREF form? hmmmm....

    The intended way to solve this was to isolate the variable with the highest value, F. I'm lost here.

    Can anyone give me the next step? I'm not looking for a total answer, but just a lead in the right direction.
    That's not the way that I would do it, but if you do you may observe you cannot have any $1 coins in the solution.

    Then the next highest is F, and you can have 1 or 0 in a solution, assume its 1 and see where that leads, then assume its 0 and see where that leads.

    (This does not look much like linear algebra to me, especially since the solution can be found virtually by inspection)

    CB
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member
    Joined
    Jul 2009
    Posts
    593
    Thanks
    4
    That's actually a similar problem that is in my linear algebra book. Introductory chapter sure, but it is reinforcing old ideas.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Junior Member
    Joined
    Mar 2009
    From
    Berkeley, California
    Posts
    26
    This is the part where I get stuck though....once I set F equal to one. I can do this in my head without using linear algebra. However, my teacher did an example on the board (similar to this) putting the equations in a matrix and in reduced row echelon form. Thank you for all your responses so far.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 2
    Last Post: March 12th 2011, 11:15 AM
  2. Coins
    Posted in the Advanced Statistics Forum
    Replies: 1
    Last Post: November 2nd 2009, 05:10 PM
  3. More Coins
    Posted in the Pre-Calculus Forum
    Replies: 6
    Last Post: March 19th 2009, 02:06 PM
  4. Four Coins in Jar
    Posted in the Statistics Forum
    Replies: 4
    Last Post: December 14th 2008, 07:55 AM
  5. Coins
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: November 30th 2008, 11:54 PM

Search Tags


/mathhelpforum @mathhelpforum